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Abstract
Magnetization recoveries for nuclear spin relaxation of like spins due to
magnetic dipolar coupling and diffusion on inequivalent sites involve a sum of
exponentials. The theory is applied to diffusion on octahedral and tetrahedral
interstitial sites in the face-centred cubic structure. Monte Carlo simulations
have been used to generate relaxation data for parameters typical for H in metals.
It is found that only a single exponential would be observable in the high- and
low-temperature limits, but that two-exponential recoveries could be observable
in the vicinity of the maximum in the relaxation rate as a function of temperature.
The Monte Carlo relaxation data has been fitted using a Bloembergen–Pound–
Purcell (BPP) model to assess the accuracy of the BPP model.

1. Introduction

It has been shown by Jaroszkiewicz and Strange (1985) (to be referred to as JS) that the
magnetization recoveries for nuclear spin relaxation of like spins due to magnetic dipolar
coupling and diffusion on inequivalent sites involve a sum of exponentials. A simpler
derivation of the theory has been given by Sholl (1998). The physical origin of the
multiexponential recoveries is that spins on crystallographically inequivalent sites experience
different fluctuating fields at each type of site and therefore relax at different rates. The
magnetic dipolar interactions between spins on equivalent and inequivalent sites, together
with the physical diffusion of the spins between the types of site, are taken into account in
deriving the relaxation rates and magnetization recoveries. The number of exponentials in the
magnetization recoveries is equal to the number of types of inequivalent site.

The theory was applied by JS to analyse relaxation data for the ionic conductor LaF3

in which the mobile fluorine anions diffuse on several inequivalent sites. In addition to the
multiexponential recoveries, the relaxation rates as functions of temperature showed more
complex behaviour than the single peak usually observed for diffusion between equivalent
sites when the logarithm of the relaxation rate is plotted against reciprocal temperature.
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Another example of a single nuclear species diffusing on inequivalent sites is the diffu-
sion of hydrogen in some complex metal–hydrogen systems (Barnes 1997). The present work
applies the theory of relaxation for inequivalent sites to the example of hydrogen diffusing on
octahedral (O) and tetrahedral (T) sites in the face-centred cubic (FCC) structure. Relevant
metal–hydrogen systems are H in transition metals at high H concentrations. The H tend to
occupy the T sites at low H concentrations and increasingly occupy the O sites as stoichiometry
is approached. An aim is to determine under what circumstances the multiexponential mag-
netization recoveries would be observable, and whether significant deviations from the simple
single peak in the relaxation rate as a function of reciprocal temperature occur. Previous anal-
yses of data for these systems have assumed a single-exponential recovery and relaxation rate.

A second aim of this work is to assess the accuracy of a Bloembergen–Pound–Purcell
(BPP) model for analysing the relaxation data for diffusion on O and T systems in the FCC
structure. This is accomplished by calculating relaxation rates from Monte Carlo simulations
and analysing this data using the BPP model.

The basic structure and diffusion model is described in section 2, the theory of the
magnetization recoveries is summarized in section 3 and the details of the relevant spectral
density functions, and the BPP model for them, are given in section 4. Results of Monte Carlo
simulations of relaxation data and fitting of the data using the BPP model are presented and
discussed in section 5.

2. Structure and diffusion model

The O sites in the FCC lattice form an FCC lattice with the same lattice parameter and the
T sites form a simple cubic lattice with half the FCC lattice parameter. Each O site has 12
nearest-neighbour O sites and eight nearest-neighbour T sites. Each T site has six nearest-
neighbour T sites and four nearest-neighbour O sites. The energies of H at O and T sites are
EO and ET (which will be taken as 0), respectively. It will be assumed that diffusion occurs by
jumps from O and T sites to neighbouring O and T sites and that the jumps are of Arrhenius
form � = �0 exp−Eβ where β = 1/(kT ). The jumps are over potential barriers with energies
EOO, EOT = ETO and ETT. An attempted jump is not successful if the target site is occupied.

The fraction c of the total O and T sites occupied is related to the fractional occupations
cT and cO of T and O sites, respectively, by

3c = 2cT + cO (1)

since there are twice as many T sites as O sites. It is assumed that the energy parameters are
independent of temperature and the fraction c of occupied sites.

The equilibrium occupation probabilities cT and cO are determined by the rates of transfer
between the O and T sites. The number of jumps per second between O and T sites is

NTcT�TO ZTO(1 − cO) = NOcO�OT ZOT(1 − cT) (2)

where NT is the number of T sites in the system, �TO is the rate of attempted jumps from a T
site to a particular neighbouring O site, ZTO is the number of O nearest neighbours to a T site,
and similarly for the O and T labels interchanged. Therefore

1

NT ZTO�T0

(
1

cT
− 1

)
e−ETβ = 1

NO ZOT�O0

(
1

cO
− 1

)
e−EOβ (3)

since �TO = �T0 exp[−(ETO − ET)β] and �OT = �O0 exp[−(ETO − EO)β]. Each side of
equation (3) is equal to a function of β, A(β), so

cT = 1

NT ZTO�T0 A(β)eETβ + 1
cO = 1

NO ZOT�O0 A(β)eEOβ + 1
. (4)
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A(β) is obtained from equations (1) and (4). If NT ZTO�T0 = NO ZOT�O0, the expressions (4)
for cT and cO are the Fermi–Dirac distribution. For the O and T sites in the FCC structure,
NT ZTO = NO ZOT and it will be assumed that the prefactors �T0 = �O0 = �0 so that the
fractional occupations of the T and O sites are given by the Fermi–Dirac distribution.

3. Magnetization recoveries and relaxation rates

As shown by JS and Sholl (1998), the components of the magnetizations MT(t) and MO(t) of
the spins on T and O sites are the solutions of

dMT

dt
= −aTTMT − aTOMO

dMO

dt
= −aOT MT − aOOMO (5)

where the time-independent coefficients aTT, aTO, aOT and aOO depend on the spectral density
functions of the magnetic dipolar fluctuations and the rates of jumps between O and T sites.
The components of magnetization may be the longitudinal or transverse magnetizations in
either the laboratory or rotating frames. Only the longitudinal components will be considered
in this paper.

The expressions for the coefficients for relaxation in the laboratory frame are

aTT = 4�TO(1 − cO) +
K

12
[18J (1)

TT (ω) + 18J (2)
TT (2ω) + J (0)

TO (0) + 18J (1)

TO (ω) + 9J (2)

TO (2ω)] (6)

aTO = −8�OT(1 − cT) +
2cT

cO

K

12
[−J (0)

TO (0) + 9J (2)

TO (2ω)] (7)

aOT = −4�TO(1 − cO) +
cO

2cT

K

12
[−J (0)

OT (0) + 9J (2)

OT (2ω)] (8)

aOO = 8�OT(1 − cT) +
K

12
[18J (1)

OO(ω) + 18J (2)
OO(2ω) + J (0)

OT (0) + 18J (1)
OT (ω) + 9J (2)

OT (2ω)] (9)

where K = γ 4h̄2 I (I + 1), γ is the gyromagnetic ratio of a spin, I is the quantum number of
the spin, ω = γ B0 is the resonant frequency of a spin in the applied magnetic field B0 and
J (p)

αβ (ω) are spectral density functions which are described in the following section.
For relaxation in the rotating frame, the corresponding coefficients are obtained by

replacing the spectral density functions J (p)(pω) by J (p)(ω1, ω) where

J (0)(ω1, ω) = 1
4 J (0)(0) + 9

8 J (2)(2ω) (10)

J (1)(ω1, ω) = 1
2 J (1)(ω) + 1

8 J (2)(2ω) (11)

J (2)(ω1, ω) = 1
4 J (0)(2ω1) + 2J (1)(ω) + 1

8 J (2)(2ω) (12)

and ω1 = γ B1 is the resonant frequency in the rotating field B1.
The solution of the differential equations (5) shows that each of MT(t) and MO(t) are linear

combinations of two exponentials. The observed magnetization is M(t) = MT(t)+ MO(t) and

M(t) = U exp(−λ+t) + V exp(−λ−t) (13)

where

λ± = (aTT + a00 ± f )/2 (14)

U = [(aTT + aOT − λ−)MT(0) + (aTO + aOO − λ−)MO(0)]/ f (15)

V = [(λ+ − aTT − aOT)MT(0) + (λ+ − aTO − aOO)MO(0)/ f (16)

f = [(aTT − aOO)2 + 4aTOaOT]1/2. (17)

The initial condition for the magnetization satisfies 2cT MO(0) = cO MT(0) since the initial
magnetizations are proportional to the populations of the T and O sites.
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Magnetization recoveries for spins diffusing on equivalent sites have single-exponential
recoveries. For longitudinal relaxation the relaxation rate is (Abragam 1961)

R1 = 3K

2
[J (1)(ω) + J (2)(2ω)]. (18)

It is interesting to develop this expression for inequivalent sites by assuming that the spectral
density functions are the weighted averages for the various O and T dipolar interactions. The
result is

R1 = 3K

2

{
2cT

3c
[J (1)

TT (ω) + J (2)
TT (2ω) + J (1)

TO (ω) + J (2)

TO (2ω)]

+
cO

3c
[J (1)

OT (ω) + J (2)

OT (2ω) + J (1)

OO(ω) + J (2)

OO(2ω)]

}
. (19)

It can be shown that the expression (14) for λ− reduces to this result for R1 in both the high- and
low-temperature limits.

In the high-temperature limit, the terms �αβ dominate the spectral density function terms
on the right-hand sides of equations (6)–(9). In this case λ+ = 4�TO(1 − cO) + 8�OT(1 − cT)

and λ− is a much smaller term dependent only on the spectral density functions. Evaluating
λ−, U and V to first order in the spectral density function terms shows that V � U and that
λ− = R1.

In the low-temperature limit, the terms �αβ are negligible and the terms J (0)
OT (0) and J (0)

TO (0)

dominate the other spectral density functions. Evaluating λ±, U and V to first order in these
terms again shows that V � U , λ− = R1 and λ+ = K [J (0)

OT (0) + J (0)

TO (0)]/12. It follows that
only a single-exponential recovery described by λ− would be observable in both the high- and
low-temperature limits, and that λ− is then given by R1.

4. Spectral density functions and BPP models

The spectral density functions J (p)(ω) are the Fourier transforms of the correlation functions
G(p)(t) of the fluctuations of magnetic dipolar interactions between pairs of diffusing spins.
For inequivalent sites they are (JS)

G(p)

αβ (t) =
∑

x

∑
r0 �=0

∑
r(β) �=0

cβu(p)(r0)u
(−p)(r)P(x, 0; t)P(x + r0, r; t) (20)

where α and β are O or T, the sums over x and r0 are over all crystal sites, the sum over r is
over all β-sites and the origin is an α-site. The function P(x,y; t) is the probability of a spin
being at y at time t given that it was at x at time zero, and cβ is the fractional concentration
of spins on β-sites. The function u(p)(r) = d2

pY2p(�)/r3 where Y2p are spherical harmonics
relative to the direction of the magnetic field as the z-axis, and d2

0 = 16π/5, d2
1 = 8π/15

and d2
2 = 32π/15. The correlation function is for relaxation of a spin i at the origin at time t

interacting with a spin j at r at time t , averaged over all possible starting positions of the spins at
time 0. For the spherical average over magnetic field directions appropriate for polycrystalline
samples, the term u(p)(r0)u(−p)(r) is replaced by (2Cp/15)P2(cos θ)/(r3r3

0 ) where θ is the
angle between r and r0, and C0 = 6, C1 = 1 and C2 = 4 (Sholl 1974).

A BPP model for the correlation function assumes that the correlation is destroyed when
a jump of either of a pair of interacting spins occurs. The BPP correlation function is therefore

G(p)

αβ (t) = cβ

∑
r(β) �=0

|u(p)(r)|2e−(�α+�β)t = cβCp Sαβe−(�α+�β)t (21)
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where the exponential is the probability of no jump of either spin in a time t , �α is the total
rate of jumps away from an α-site, and Sαβ = ∑

r(β) �=0 1/r6 with the origin at an α-site. The
expressions for �α are

�T = 6�TT(1 − cT) + 4�TO(1 − cO) �O = 12�OO(1 − cO) + 8�OT(1 − cT). (22)

A simpler BPP model would assume that �α = �0e−Eβ independent of the type of site, where
�0 and the energy E are fitting parameters, but this has not been considered.

The spectral density functions were calculated by Monte Carlo simulations to provide an
accurate basis for comparison of the BPP models. The simulations used 63 FCC unit cells. A
continuous time method was used to obtain the correlation functions and it was verified that
the correlation functions were proportional to t−3/2 in the long-time limit as an aid to obtaining
accurate spectral density functions (Luo and Sholl 2002).

5. Results

Calculations were performed for some typical values of parameters for H in metals (Majer et al
1994) in order to determine the types of effect that could be observed and to test the accuracy of
the BPP model. Two sets of parameters were used. For both sets of parameters, �0 = 1013 Hz
for all jump prefactors, ET = 0 eV, ETT = 0.5 eV, ETO = 0.9 eV, EOO = 0.6 eV, and
the resonant frequency is 60 MHz. Pairs of values of EO and c were chosen to give different
proportions of O- and T-site occupancies. One set has EO = 0.22 eV and c = 0.667 and the
other set has EO = 0.1 eV and c = 0.62.

Results of the Monte Carlo simulations for the temperature dependence of λ± are shown
for the two sets of parameters in figures 1 and 2. Also shown are the results for R1 from
equation (19) and the high- and low-temperature limits for λ+ as discussed in section 3. The
units of λ± and R1 are 3K Sc/(5a6) where a = 2.5 nm. The insets in the figures show the
corresponding temperature dependences of the occupation probabilities of the O and T sites as
calculated from equation (4). The parameters used in figure 2 result in mainly T-site occupation
of the spins, while the parameters used in figure 1 give more O-site occupancy. It can be seen
that the expression for R1 is an excellent approximation to λ− in the high- and low-temperature
limits but is less satisfactory in the vicinity of the maximum in λ−.

The two magnetization recovery exponents λ± are greatly different, except in the vicinity
of the maximum of λ− where both curves show structure unlike the smooth maxima in the
corresponding relaxation rate curves for simple systems. By comparing figures 1 and 2 it
is apparent that this structure in the curves is greater and the two exponents are closer in
magnitude, for sets of parameters which give more equal occupancy of the inequivalent O and
T sites.

The observable magnetization recoveries given by equation (13) involve the coefficients U
and V given by equations (15) and (16). The temperature dependence of the ratio U/V is shown
for both sets of parameters in figure 3. The values of U/V are very small except near the maxima
in λ−, so in the high- and low-temperature limits away from these maxima only a single-
exponential magnetization recovery characterized by λ− would be observable. Examples of
magnetization recoveries where two exponentials might be observed experimentally are shown
in figure 4. In such cases it would be useful to deduce both exponents λ± and the value of
U/V from the experimental data.

Fits of the BPP model given by equation (21) to the Monte Carlo data in figures 1 and 2 are
shown in figure 5. The results shown are for least-squares fits obtained by varying�0 and all the
energy parameters except ET. The fit value of �0 = 1013 Hz is the same as for the Monte Carlo
data. The fit values of the energy parameters are as follows, where the figures in parentheses
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Figure 1. Values of the exponents λ± (+ and• symbols) as a function of 1000/T for the c = 0.62
parameters. The solid curve shows the values of R1 in equation (19) and the dashed lines are the
high- and low-temperature limits of λ− as described in the text. The inset shows the values of the
occupation probabilities cO and cT of the O and T sites as a function of 1000/T .

Figure 2. As figure 1, but for the c = 0.667 parameters.

are the original Monte Carlo parameters. For the c = 0.667 data, EO = 0.20 (0.22) eV,
ETT = 0.55 (0.5) eV, ETO = 0.89 (0.9) eV, EOO = 0.70 (0.6) eV, and for the c = 0.62 data,
EO = 0.08 (0.1) eV, ETT = 0.54 (0.5) eV, ETO = 0.90 (0.9) eV, EOO = 0.56 (0.6) eV.
The corresponding results for U/V for the fit parameters are shown in figure 3. The quality of
the fit to the λ±-data is excellent for both sets of parameters. The energy parameters deduced
from the fit agree with the input energies to typically within 10%. The BPP model therefore
provides an acceptable model for analysing such data within these limits of accuracy.
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Figure 3. Values of the ratio U/V of the coefficients of the exponentials for the magnetization
recoveries in equation (13) as a function of 1000/T . For the c = 0.62 parameters, the ∗ symbols
show the Monte Carlo values and the dashed curve shows the BPP results (left-hand scale). For the
c = 0.667 parameters, the circle symbols show the Monte Carlo values and the solid curve shows
the BPP results (right-hand scale).

Figure 4. Magnetization recoveries for 1000/T = 2. The solid curve is for the c = 0.62 parameters
and the dashed curve is for the c = 0.667 parameters.

6. Conclusions

Nuclear spin magnetization recoveries are sums of exponentials for relaxation due to diffusion
between inequivalent sites. The example of diffusion between O and T sites in the FCC structure
considered here shows that the multiexponential recoveries will not always be observable
because the coefficient of one of the exponentials will be negligible, or because one of the
exponents will be very large. When only one exponential can be observed it will be the one
corresponding to the smaller of the two exponents. Multiexponential recoveries are most
likely to be observed at temperatures corresponding to the maximum in the recovery rate.
The observation of multiexponential behaviour in such circumstances would provide strong
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Figure 5. Fits of the BPP model (curves) to the Monte Carlo results for λ±. The left-hand figure
is for the c = 0.62 parameters and the right-hand figure is for the c = 0.667 parameters.

evidence for diffusion between inequivalent sites when the relaxation mechanism is due to
magnetic dipolar interactions. The additional recovery exponent observed and the ratio of
the coefficients of the exponentials also provides further data to assist in understanding the
diffusion behaviour.

The analysis of relaxation data using Monte Carlo simulations is very time-consuming
and the use of a BPP model is a much simpler approach. The comparison of the BPP model
results with the Monte Carlo simulation data in the previous section has shown the type of
quality of fit that can be expected from a least-squares fit to experimental data and the accuracy
of the deduced parameters.

The theory presented here could be extended straightforwardly to the inclusion of the
effect of metal–hydrogen interactions where these dipolar interactions were significant, to
longitudinal relaxation in the rotating frame and transverse relaxation, and to other complex
H–metal systems such as diffusion between e and g sites in Laves phase materials.
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